Skip to main content

Quick Start

Get started with Groq in under 2 minutes:
from portkey_ai import Portkey

# 1. Install: pip install portkey-ai
# 2. Add @groq provider in model catalog
# 3. Use it:

portkey = Portkey(api_key="PORTKEY_API_KEY")

response = portkey.chat.completions.create(
    model="@groq/llama-3.3-70b-versatile",
    messages=[{"role": "user", "content": "Hello!"}]
)

print(response.choices[0].message.content)

Add Provider in Model Catalog

Before making requests, add Groq to your Model Catalog:
  1. Go to Model Catalog → Add Provider
  2. Select Groq
  3. Enter your Groq API key
  4. Name your provider (e.g., groq)

Complete Setup Guide

See all setup options and detailed configuration instructions

Groq Capabilities

Tool Calling

Use Groq’s tool calling feature to trigger external functions:
from portkey_ai import Portkey

portkey = Portkey(api_key="PORTKEY_API_KEY")

tools = [{
    "type": "function",
    "function": {
        "name": "getWeather",
        "description": "Get the current weather",
        "parameters": {
            "type": "object",
            "properties": {
                "location": {"type": "string", "description": "City and state"},
                "unit": {"type": "string", "enum": ["celsius", "fahrenheit"]}
            },
            "required": ["location"]
        }
    }
}]

response = portkey.chat.completions.create(
    model="@groq/llama-3.3-70b-versatile",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "What's the weather like in Delhi?"}
    ],
    tools=tools,
    tool_choice="auto"
)

print(response.choices[0].finish_reason)

Speech to Text (Whisper)

Transcribe or translate audio using Groq’s Whisper model:
from portkey_ai import Portkey

portkey = Portkey(api_key="PORTKEY_API_KEY", provider="@groq")

audio_file = open("/path/to/file.mp3", "rb")

# Transcription
transcription = portkey.audio.transcriptions.create(
  model="whisper-large-v3",
  file=audio_file
)
print(transcription.text)

# Translation
translation = portkey.audio.translations.create(
  model="whisper-large-v3",
  file=audio_file
)
print(translation.text)

Text to Speech

Convert text to natural-sounding audio:
from portkey_ai import Portkey
from pathlib import Path

portkey = Portkey(api_key="PORTKEY_API_KEY", provider="@groq")

speech_file_path = Path(__file__).parent / "speech.mp3"
response = portkey.audio.speech.create(
  model="playai-tts",
  voice="Fritz-PlayAI",
  input="Today is a wonderful day to build something people love!"
)

with open(speech_file_path, "wb") as f:
    f.write(response.content)

Supported Models

Groq provides ultra-fast inference for various open-source models:
Model FamilyModels Available
Llamallama-3.3-70b-versatile, llama-3.1-70b-versatile, llama-3.1-8b-instant
Mixtralmixtral-8x7b-32768
Gemmagemma-7b-it, gemma2-9b-it
Whisperwhisper-large-v3, whisper-large-v3-turbo
TTSplayai-tts
Check Groq’s documentation for the complete list of available models.

Next Steps

For complete SDK documentation:

SDK Reference

Complete Portkey SDK documentation